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Abstract-This paper is concerned with sensitivity analysis for the distributed parameter estima- 
tion problem arising in the modeling process for fluid flow in underground porous media. An efficient 
algorithm was constructed using wariational calculus techniques for the evaluation of sensitivity gra- 
dient curves which describe variations of system outputs resulting from variations of a spatially-vary- 
ing parameter in nonlinear partial differential equations. For a test problem of estimating transmissiv- 
ity of a one-dimensional ideal gas reservoir, sensitivity behavior was analyzed under various reservoir 
conditions, and the results were applied to devising a parameter discretization scheme which will 
yield improved parameter estimates. 

INTRODUCTION 

The problem of estimating spatially varying param- 
eters in distributed parameter systems (DPS) arises 

in many areas of science and engineering. The present 
work has been primarily motivated by the modeling 
of fluid flow in underground porous media, such as 
pet;pleura reservoirs or aquifers. The spa~,ially varying 

properties to be estimated represent  unknown reser- 
voir parameters such as permeability and porosity. 
These parameters are inaccessible to direct measure- 

ment, and, therefore, have to be estimated on the basis 
of measured pressure and flow rate histories; this es- 
timation process is commonly referred to as history- 

matching [1, 2]. 
The major difficulty in developing successful solu- 

tion techniques lies in the ill-posedness of the problem 
in the sense that small errors  in the data may cause 
large errors in the estimates (instability), or the given 
data may not provide enough information to determine 
a unique estimate (unidentifiability) [3]. This ill-posed- 
ness is directly related to the behavior of sensitivity 
which is defined to be the partial derivative of the 
output of a system with respect to the parameter. 
Roughly speaking, instability is ascribed to a very 
small sensitivity, while unidentifiability to a vanishing 
sensitivity. Thus, sensitivity analysis has been under- 
taken in many studies on parameter  estimation to un- 

derstand the ill-posed behavior and thereby to develop 
efficient solution algorithms [4, 5]. 

In lumped parameter systems (LPS) where parame- 
ters take on constant values, sensitivity coefficients 
can be easily evaluated, and then sensitivity analysis 
centers around the analysis of the sensitivity coeffi 
cient matrix. On the other hand, in distributed param- 
eter systems where the parameter  is given as a func- 
tion of the spatial variable, sensitivity takes the form 
of a functional gradient, which we will call a sensitivity 
gradient in the following. It delivers the information 
on how the output will change due to the regional 
variation of the parameter. 

But, despite the detailed information it delivers, sen- 

sitivity gradient has been neglected in most studies 
because of a priori discretization of parameters adopt- 
ed in constructing numerical estimation algorithms. 
It is a common practice to represent the unknown param- 
eter as a linear combination of shape functions, e.g. 
B-splines, and then to estimate the spline coefficients; 
this effectively reduces a DPS estimation problem to 
an LPS one. However, the resulting sensitivity coeffi- 
cients may only represent  lumped information along 
the profiles of tile shape functions, hence lacking spa- 

tial details. 
This paper focuses on the analysis of sensitivity 

gradient arising in a DPS estimation problem. First, 
an estimation problem and its solution algorithms are 
presented. Then, an optimal control formulation is 
presented for the evaluation of the sensitivity gra- 
dient. Finally, tile algorithm is applied to a test prob- 
lem of estimating transmissivity of a one-dimensional 
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ideal gas reservoir. 

A DISTRIBUTED PARAMETER ESTIMATION 
PROBLEM AND ITS SOLUTION ALGORITHMS 

The pressure distribution u(x, t) of fluid flowing in 
porous media is governed by the following nonlinear 
partial differential equation E6~. 

O_}L = v .  [cffx) O(u) V.u~ + q(x, t), in f~ x (0, T) (1) 
Ot 

subject to initial and no-flow boundary, conditions 

1.C.. u(x, 0)= u,~(x) in D. 

B.C. 3 u  = 0  on 0 ~ x ( 0 ,  T) 
On 

In the above equation, ct(x) denotes the transmissivity 
of media which is a measure of ease for fluid flow 
in the domain fl,  0(u) a property-dependent term, q(x, 
t) the withdrawal or injection of fluid, n the outward 

unit normal vector to the boundary." 0fl.  
A parameter estimation problem associated with the 

model Eq. (1) can be described as follows. 
Knowing the initial pressure distribution udx) and 

given a set of measurements  of pressure {u'*~(x,, tel): 
i= l , . . . ,  n,,,, k - l , . - . ,  n,} and a production rate q(x,O 
up to time T. determine the spatially varying parame- 

ter ~,(x). 
Solution algorithms to the above estimation problem 

are commonly constructed on the basis of nonlinear 

regression in the following three steps [7]. 

1. Formulation Step 
The estimation problem is formulated as a nonlinear 

optimization problem of minimizing an objective func- 

tional. In most cases where the output data are the 
only information available on the system, a least-squar- 
es functional is regarded as the most "natural" objec- 

tive functional. 

~,u nt 

rain J~.,(ca)= Z Z Eu(x,, tj~; a ) -  u;~l~ e (2) 

Depending on the availability of valid statistical assump- 

tions on observation errors or a priori information on 
the 9arameter, one may use a modified objective func- 

tional [8]. 
2. D i se r e t i z a t i on  Step 

This step provides a computational framework for 
minimization of the objective functional. Specifically, 
(2) is converted into an approximate finite dimensional 
minimization problem on the basis of two kinds of 
discretization: (i) finite difference or firdte element 
sohltion of the model equation (.stale discretization) and 

(ii) representation of the spatially varying parameter  
as a linear combination of shape functions (lmrameter 
discretization). For example, the parameter can be ap- 
proximated using B-splines as follows s 

NO 
a ( x ) =  i=F-, co, B~(x) (a )  

3. Optimization Step 
In this step the discretized objective functional is 

actually minimized with respect to the spline coeffi- 
cients introduced in (3). 

min Jcs(m), (~ ~z R "~p (4) 
(0 

Typically the minimization is carried out using an iter- 
ative scheme of the following form 

m~k - li = COik/+ yik/ d!k>, (5) 

where d ~) denotes the descent direction at the k-th 
major iteration, and y.~k~ a step length along the descent 
direction. 

SENSITIVITY EVALUATION ALGORITHMS 

Sensitivity is defined as the partial derivative of a 
system output with respect to a model parameter. The 
system output associated with the parameter estima- 
tion problem stated in the previous section consists 
of point values u(x, tg ca), i=  1,"',  r~,,,, k -  1,-.., nt (ab- 

breviated as u~D. ct being a function of the spatial var- 
iable x, each sensitivity 0u,~./0ct takes the form of a 
functional gradient, whose meaning will be made clear 
in the following. 

In functional analysis, a gradient of a functional J(c0 

defined on a Hilbert space H is the unique element 
r that satisfies 

8J=(q0, 8ca), for eve~, 8eL ~ H, (6) 

where 8 denotes the variational operator, ( ' ,  . ) ,  the 
inner product in the Hilbert space El0]. With the aid 
of delta functions, the output u,~ can he represented 
as a functional defined on Ldf)). 

J(ca) u(x, t,.: o3 

-f"/" u(x, t: ca)8(x-x,)8(t-t , , , )  dx dt (7) 
d 

Thus, the Eq. (6) with L._,(~) chosen for tt implies 

that when multiplied by a variation of parameter and 
integrated over the domain, the sensitivity gradient 
0u,d0ca would give the consequent change in the mod- 
el output u,,,. In other words, the profile of au,./a= 
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represents the influence of regional variation of the 
parameter on the output. 

The gradient OuJOa satisfying (6) was found using 
an optimal control formulation for the objective func- 
tional given in (7). Here the parameter ct is regarded 
as a control variable that minimizes the objective func- 
tional J(a) under the constraint of the state Eq.(1). 
First, an augmented objective functional is constructed 
by introducing an adjoint variable k(x, t). 

J(a)=fl, fn [u(x,t; ~)8(x-x,)8(t-tO 
+k(x, t )  { ~ - t  - V - [ c t  O(u)Vu]-q}]  dx dt (8) 

The first variation of J(a) is expanded as 

8J= f '  f n  [8(x x,) 8 ( t - t 0  5 u + k  { 5[u 

- V.  [ a  o'(u)au Vu] - V.  [ a  , ( u )  Vau]} 
% 

- 1  

(93 

Next, applying the Green's formula and the identity 
equation 

v .  {a O'(u)Su Vu} + v .  {ct , (u)  VSu} 

= V. [a  VlO(u)Su}], (10) 

(9) is arranged to give 

8j=f'fa [ {-~-t ~ -o(u)v.(~vx)+6(x-x,) 
5(t--te)} 8u dx d t + f n k g u ] , _ , d x  

f " f  07L 0(u)Su ds at + ct 
/p 0g/ o n  

+ f n {  f / ,0(U)Vu'Vkdt t  6 a d x  (11) 

Finally, letting the terms on the right hand side vanish 
except the last one, one can obtain 

0J _ Ou,~ _ f l  Oct Oct o O(u) Vu. Vk dt (12) 

where u satisfies the state Eq. (1), and )v satisfies the 
adjoint equation. 

6L _ O(U) V. {ct(x) V)v} +.Six-x,)  8(t -t~), 
i?t 

in fI x (0, T) (13) 

I.C.: X(x, T ) = 0  in f/  

B.C.: 0 ~  = 0  on 0f~x(0.  T) 
On 

Vvhen a parameter to be estimated is discretized 

a priori as in (3), it is sensitivity coefficients, e.g., 
Ou,JOw, j = 1,'", Np that count in actual numerical im- 
plementation. Once a sensitivity gradient is obtained, 
each sensitivity coefficient can be calculated as follows. 

0u,h _ (  0u,k B~(x) dx (14) 
0% Jn Oct 

However, it should be mentioned that the integral 
operation of (14) implies the lumping of spatial details 
of sensitivity behavior along the profile of the shape 
function Bj(x); this may result in ill-conditioning in 
the optimization step unless the parameter is properly 
discretized. 

N U M E R I C A L  E X P E R I M E N T S  

1. T e s t  P r o b l e m  

A one-dimensional ideal gas reservoir {where ~(u) 
=u/~t} was considered as a test problem to demon- 
strate the algorithms described so far. For an easy 
grasp of the relative magnitude of numerical values in- 
volved, the governing equation was converted into a 
dimensionless form by scaling each variable or param- 
eter to the following reference values, respectively: 
reservoir length L=10Km,  total time lapse T=365 
days, pressure uo=200 arm, total production rate q,= 
0.219 arm/day, and transmissivity cto=6.58• 10 7 m 2. 

0u 0 
I I p R ,  

-a(x) uOU +q~Z~ q , .S(x-x , ) ,  - - K  
0t 0x ~ 0x 

in (0, 1) x (0, 1) (15) 

I.C. u(x, 0)=uo(x) in C0, 1) 

0 u  
B.C. 0x (0, t )=  (1, t )=0  in (0. 1) 

where K = a~Tu,~/laL ~ = 0.2365 

q = qtTAJ~)= 0.4 

Similarly, the corresponding adjoint equation and sen- 
sitivities were obtained in dimensionless forms. 

0t 
in (0, 1) x (0, 1) (16) 

I.C. k(x, 1): :0 in (0, 1) 

Ok ~ k  
B.C. -0-s t) o x ( l '  t) 0 in (0, 1) 

0u,~. ; Ou Ok = ~  / ~ u dt (17) 
dc~ a~, 0x 0x 

0u,~_ (I 0u,k. B,(x)dx (18) 
0co, J0 Oct 
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2. Numer i ca l  A l g o r i t h m s  
Numerical solutions to the state Eq. (15) were obtain- 

ed using a finite difference method (FDM). The spa- 
tial domain (0, 1) was divided into 100 uniform inter- 
vals. 101 point-centered grids were used to approxi- 
mate the state variable, while 100 block-centered grids 
for the parameter. The spatial derivative term in (15) 

was converted first, 

0u 1 0u 2 u - (19) 
0x 2 0x 

and then was approximated using central difference 
formula. The time derivative was approximated using 
backward difference. The resulting system of nonlin- 
ear equations were solved using Newton-Raphson iter- 

ations. 

Similarly. the adjoint Eq. (16) was solved using FDM 
on the same mesh. The linearity of Eq. (16) in X ex- 
empts one from Newton-Raphson iterations in solving 
finite difference equations. The time steps march back- 
ward from t = 1 on. Due to the Neumann type bound- 
a ~  condition, however, the initial relaxed state at t =  1 
persists until tk. So the computation time could be 
redaced by starting from t~. 

Once u and L were obtained, the value c)f sensitivity 
gradient at the m-th parameter  grid was evaluated 
by .approximating the derivatives by finile difference 

(du,~ K f]  ~ . , ~  ),,.~. 2(Ax)'-' ( u ; . ~ - u ~ )  (k,.]-)%) dt. (20) 

and then using the Simpson's rule. The sensi tMty 
coefficient with respect to the j-th spline coefficient 
is also calculated as follows. 

_/,u,~ : ,~ (Ou,. '),B,(x,,,)Ax (21) 
{3oJ, ,, f,;, c?a ,, 

where I~j= {m: Bj(x,,)r 

Estimation of a(x) proceeded in three steps as describ- 
ed previously. First, a leasl squares objeclive function- 

al was constructed as 

m n Jj,s(cO N ,, {u(x,, t,~: ct) ,~. }- (22) 

The' observation data were simulated by adding to the 
calculated values of u random numbers having normal 
distribution with mean zero and a standard deviation 
of 0.01. Next, the parameter  is discretized using B- 
splines. Finally. the discretized objective functional was 
minimized using the BFGS (Bruyden-Fletcher-Gold- 
farb-Shanno) quasi-Newton algorithm i l l ]  and the 
golden section method for line search. 
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Fig. 1. u(x, t) vs. x for 0t(x)= 1.0 with np,.= 1 at x , .=0 .5 .  

R E S U L T S  AND DISCUSSION 

1. S t a t e  B e h a v i o r  

Fig. 1 shows typical pressure distributions in a reser- 
voir which is assumed to have a uniform parameter 
ct(x)==l and a single production well located in the 
middle region. The initial uniform distribution can be 
seen to move toward the excavated profiles as fluid 
is withdrawn from the well. Indeed it is the data gath- 
ered from this "excited" system that forms the ground 

of parameter estimation. The assumed symmetry in 
reserwlir conditions is reflected ill the symmetry of 

tile profiles, 
2. A d j o i n t  B e h a v i o r  

Fig. 2 shows typical behavior of the dimensionless 
adjoint variable obtained in the process of evaluating 
a sensitivity gradient for the output u(0.5, 0.1) in the 
same reservoir as in Fig. 1. In the adjoint Eq. 116), the 
input stinmlating the relaxed state takes a form of 
a delta function at the observation site and time, i.e. 
6(x-x,)8(t--t, ,).  Accordingly, k(x, t) attains the maxi- 
mum initially (t=-0.1), then have gradually abated pro- 

flies as time passes backward. 
3. S e n s i t i v i t y  B e h a v i o r  

Fig. 3 shows three sensitivity gradient profiles for 

three outputs u(0.2, 0.1L u(0.5. 0.1), u(0.8. 0.1) respec- 
tively under the same reservoir conditions as in Fig. 1. 
The profile corresponding to u(0.5, 0.1) forn~ls a big 
peak in the middle and decreases rapidly toward the 
both ends. This implies that a small variation of the 
parameter in the middle region where the production 
well is located has a greater effect on the model output 
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u(0.5, 0.1) than variations in the boundary regions 

have. This can be ascribed to the sharp gradient  in 

the pressure  distribution of Fig. 1 near the production 

well. which will increase the integrand ia (17). From 
a physical view point, the transmissivity ~t r ep resen t s  

a measure  of tendency for the sys tem to dissipate 

its p ressure  gradient.  Thus, in the region where  high- 

er :gradient builds up, the p ressure  output has larg- 

er sensitivity to the transmissivity.  

The major feature of the sensitivity profile for u(0.2, 

0.1) is that it has negative values in the region be- 
tween 0.2 and 0.5. This implies in general  that a posi- 

tive variation of the transmissivi ty in the region be- 

tween a specific observation site and a nearby produc- 
tion well will decrease  the pressure  output at the ob- 

servation site. It is also observed that parameter  var- 

iation near  the production well also has larger influ- 

ence than elsewhere.  The sensitivity profile for u(0.8, 

0.1) exhibits  a symmetr ic  profile to tile profile for u(0.2, 

0.1) which comes from the symmet ry  C observation 

sites and rese~,oi r  conditions. 
A sensitivity profile for a given observation point 

gets  intensified as time passes  bv. This temporal be- 
havior is well illustrated in Fig, 4 which shows three  
profiles for the outputs u(0.2, 0.1). u(0.2, 0.5) and u(0,2, 

1.0). 
Fig. 5 shows sensitivity behavior observed in a re- 

servoir  with two production wells located at x = 0 , 3  

and 0.7. As in Fig. 3, each profile has peaks around 

the production wells and negative values between its 

observation site and production wells. Besides, every 
profile has zero value at x:::0.5, which means  that 

parameter  change in the middle of two production 

wells where  the p ressure  gradient  vanishes x~ill have 

no effect on the output at any point. 
Fig. 6 shows sensitivity behavior in a reservoir  

which has a spatially varymg a , (x)-  1 ~ 0.5 sin 2nx and 
a single production well in the middle. Behavior simi- 
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lar to Fig. 6 is observed on the whole, but symmet ry  

is lacked due to the unsymmetr ical  shape of ct. Varia- 
tion of parameter  around x =0.75 where  the parame- 

ter  has the minimum value can be seen to have larger 
sensitivity than around the maxinmm point x 0.25. 

The features  of sensitivity gradient  behavior discus- 

sed so far can be summarized  as follows. 

(1) The p ressure  output has larger sensitivity to 

a variation of parameter  (6ct) nea t  a production well, 

while it has very. small one to 8ct in the boundary 

region. 
('2) 8c~ be tween an observation well and a nearby 

production well has a negative effect on the output 

at the observat ion well. 
(3) 8ct in the middle of two production wells has 

no influence over any uik. 

(4) 8~. in a region where  ct has larger values has 

a smaller  effect in magnitude,  but a more  far-reaching 

range of influence. 
(5) As t ime passes  by, the sensitivity gradient has 

more  intense and far-reaching profiles. 
3. A p p l i c a t i o n  to  P a r a m e t e r  E s t i m a t i o n  

The sensitivity behavior d iscussed above explains 

typical e r ror  behavior encountered  in parameter  esti- 

mation. For example, large errors  of es t imates  in the 

boundary region comes from the feature (1) above�9 

This in turn  implies that, when judiciously utilized, 

the sensitivity gradient  behavior may provide clues 

to devising improved est imation algorithms. An illus- 

trative scheme presen ted  below makes use of the fea- 

Table 1. Comparison between uniform mesh and nonuniform mesh schemes 

Items 
$7S 

deE(SrS) 
Eigenvalues 

of S1S 

Jl./<*) 
Iterations 
N&- ot-tilu~ 

Uniform mesh 

0.0064 0.0643 0.0229 0.0030 ....... 0,0037 

0.0643 0.6950 0.1600 0.0229 0.0041 

0.0229 0.1600 0.6950 0.0643 0.0271 

0.0030 0.0229 0.0643 0.0064 0.0019 

5.647• '~ 
2.234 X lO 4 

5.432• 
5.387• 

8.637• 
1.585• ~ 

12 
6.236 X t 0 

Nonuniform mesh 

0.0041 0.0271 0.0019 

0.8380 0.1520 0.0271 
0.1520 0.8380 - 0.0041 

0,0271 0.0041 0.0037 

1.150)< 10 ~ 
1,115Y 10 l 

1.959 • 10 =' 

3.125X 10 
5.191)<10 1 

1,609X 10 2 

6 
3.005 X 10 ~ 

Korean J. Ch. E.(Vol. 8, No. 4) 
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ture  (2) to devise  a pa ramete r  discret izat ion pa t te rn  
consider ing the layout of observat ion and product ion 
wells in the  domain.  

A simple es t imat ion problem was cons idered  where  
the reservoir  has a uniform t rue  pa ramete r  wr(x) 1.0 
and .a single product ion well in the  middle. The  obser-  
vation data consist  of s imulated p ressure  measure -  
meres  obtained 50 t imes successively with an interval  

of t : :0 .02  at each observat ion well located at x=0 .2 ,  
0.5 and 0.8, respectively.  The  unknown pa rame te r  is 
r epresen ted  by four B-spl ines of o rde r  1, which corre- 
sponds to a zonation method  widely used in reservoi r  

hist(,~" matching. 
When a uniform mesh  is applied for B-spline repre-  

sentat ion on the domain (0, 1) with a breakpoint  se- 
quence (0., 0.25, 0.5, 0.75, 1.0), the  sensil ivity coeffi- 

c iems calculated by (21) will undergo  a significant re- 
duction because of the  changing sign of sensit ivity 

gradient  values a round  the observat ion point x : :0 .2  
or 0 8  as shown in Fig. 3. This  reduct ion can be preven-  
ted by adopting a nonuni form mesh  where  the break- 
point sequence  (0.. 0.2, 0.5, 0.8, 1.0) is al igned with 

the layout of wells. 
Table 1 compares  the analysis resul ts  for two sensi-  

tivity coefficient matr ices  obtained using each mesh  
scheme. The  resul t s  of es t imat ion which were  s tar ted 

from a ra ther  close initial guess  ct""= 1.1 are also in- 
cluded in the table. It is clear that the nonuniform mesh  
yielded the be t ter -condi t ioned sensit ivity coefficient 
matrix, and hence  the more  accurate e~timate than 
the uniform mesh.  The  difference be tween  the two 

cases is more  clearly i l lustrated in Fig. 7 showing the  
profiles of est imates.  The  uniform mesh  scheme yield- 
ed an es t imate  with large e r rors  in the  boundary  

region, while the  nonuni form mesh  scheme led to an 
es t imate  with relatively small e r ro r  over  the  whole 
domain. 
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B, 
d 
H 

J 
I. 
~ ( n )  

Np 
n 

n . u ,  

n p u  

n t  

q(x, t) " 

S 

T : 
t : 
u 

U. 
X 
X 

: j - t h  B-spline function 
" descent  direct ion vector  
: Hilbert  space 

: objectiwe function or functional 
: l e n g t h  of 1-dimensional  reservoi r  [m]  
: space of square  integrable  functions over  D, 
: n u m b e r  of spline coefficients 
: unit  outward normal  vector  to ~ 
: n u m b e r  of observat ion wells 
: n u m b e r  of product ion wells 
: n u m b e r  of m e a s u r e m e n t s  at each observat ion 

well 

source te rm represen t ing  withdrawal  or injec- 
tion of fluid [Pa / sec ]  
sensitivity coefficient matr ix  with respect  to 
spline coefficient 
total t ime lapse [ sec]  
t ime variable [ sec ]  
p ressure  [Pa]  

initial p ressure  profile [Pa ]  
spatial variable [ m ]  
spatial variable vector  Em] 

G r e e k  L e t t e r s  

ct : t ransmissivi ty  of porous med ium = permeabi l-  
i ty/porosity [m-'] 

y : s tep size along descent  direction 
At : finite difference step size for t 
Ax  : finite difference step size for x 
8 : variation of a function or a functional 
q : d imens ion less  factor for source t e r m -  q~T/u,, 
K : d imens ion less  factor for t, ansmissivi tv  = ct.Tu,, 

/ U  

k : adjoint variable 
~a : viscosity [ P a ' s e c ]  
0 : fluid proper ty  t e rm=compress ib i l i t y /v i scos -  

i ty=  [sec l] 
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O ' functional gradient in a Hilbert space 
: spatial domain of reservoir 

0fl  : boundary of spatial domain of reservoir 
m '. vector of B-spline coefficients 
V : gradient 

S u p e r s c r i p t s  

(k) : iteration counter in numerical minimization 
(0) : initial guess in numerical minimization 

obs : obse~-ed value 
: estimate 

Subscr ip t s  

H 
i 
m 

J 
k 
LS 
0 

OW 

pw 
T 
t 
t 

Hilbert space 
point-centered state grid index 
block-centered parameter grid iadex 
B-spline index 
grid point index for time variable 
least-squares 
reference value for de-dimensionalization of 
transmissivity and pressure 
observation well 
production well 
true 
time 
total 

w : production well 
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