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Abstract— This paper is concerned with sensitivity analysis for the distributed parameter estima-
tion problem arising in the modeling process for fluid flow in underground porous media. An efficient
algorithm was constructed using variational calculus techniques for the evaluation of sensitivity gra-
dient curves which describe variations of system outputs resulting from variations of a spatially-vary-
ing parameter in nonlinear partial differential equations. For a test problem of estimating transmissiv-
ity of a one-dimensional ideal gas reservoir, sensitivity behavior was analyzed under various reservoir
conditions, and the results were applied to devising a parameter discretization scheme which will

yield improved parameter estimates.

INTRODUCTION

The problem of estimating spatially varying param-
eters in distributed parameter systems (DPS) arises
in many areas of science and engineering. The present
work has been primarily motivated by the modeling
of fluid flow in underground porous media, such as
petroleum reservoirs or aquifers. The spatially varying
properties to be estimated represent unknown reser-
voir parameters such as permeability and porosity.
These parameters are inaccessible to direct measure-
ment, and, therefore, have to be estimated on the basis
of measured pressure and flow rate histories; this es-
timation process is commonly referred to as history-
matching [1,2].

The major difficulty in developing successful solu-
tior techniques lies in the ill-posedness of the problem
in the sense that small errors in the data may cause
large errors in the estimates (instability), or the given
data may not provide enough information to determine
a unique estimate (unidentifiability) [ 3]. This ill-posed-
ness is directly related to the behavior of sensitivity
which is defined to be the partial derivative of the
output of a system with respect to the parameter.
Roughly speaking, instability is ascribed to a very
small sensitivity, while unidentifiability to a vanishing
sensitivity. Thus, sensitivity analysis has been under-
taken in many studies on parameter estimation to un-
derstand the ill-posed behavior and thereby to develop
efficient solution algorithms [4,5].
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In lumped parameter systems (LPS) where parame-
ters take on constant values, sensitivity coefficients
can be easily evaluated, and then sensitivity analysis
centers around the analysis of the sensitivity coeffi-
cient matrix. On the other hand, in distributed param-
eter systems where the parameter is given as a func-
tion of the spatial variable, sensitivity takes the form
of a functional gradient, which we will call a sensitivity
gradient in the following. It delivers the information
on how the output will change due to the regional
variation of the parameter.

But, despite the detailed information it delivers, sen-
sitivity gradient has been neglected in most studies
because of a priort discretization of parameters adopt-
ed in constructing numerical estimation algorithms.
It isa common practice to represent the unknown param-
eter as a linear combination of shape functions, e.g.
B-splines, and then to estimate the spline coefficients;
this effectively reduces a DPS estimation problem to
an LPS one. However, the resulting sensitivity coeffi-
cients may only represent lumped information along
the profiles of the shape functions, hence lacking spa-
tial details.

This paper focuses on the analysis of sensitivity
gradient arising in a DPS estimation problem. First,
an estimation problem and its solution algorithms are
presented. Then, an optimal control formulation is
presented for the evaluation of the sensitivity gra-
dient. Finally, the algorithm is applied to a test prob-
lem of estimating transmissivity of a one-dimensional
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ideal gas reservoir.

A DISTRIBUTED PARAMETER ESTIMATION
PROBLEM AND ITS SOLUTION ALGORITHMS

The pressure distribution u(x, t) of fluid flowing in
porous media is governed by the following nonlinear
partial differential equation [6].

Y _g.la(x) dw Vul+qx. b, inQx0,T) (1)

subject to initial and no-flow boundary conditions

LC. u(x, O)=uy(x) in O

BC. 9% =0 on 9Qx(0,T)
on
In the above equation, a(x) denotes the transmissivity
of media which is a measure of ease for fluid flow
in the domain Q, ¢(u) a property-dependent term, q(x,
t) the withdrawal or injection of fluid, n the outward
unit normal vector to the boundary §<2.

A parameter estimation problem associated with the
model Eq.(1) can be described as follows.

Knowing the initial pressure distribution us(x) and
given a set of measurements of pressure {u™(x, t);
i=1,-, n., k=1 n} and a production rate q(x,1t)
up to time T, determine the spatially varying parame-
ter a(x).

Solution algorithms to the above estimation problem
are commonly constructed on the basis of nonlinear
regression in the following three steps [7].

1. Formulation Step

The estimation problem is formulated as a nonlinear
optimization problem of minimizing an objective func-
tional. In most cases where the output cata are the
only information available on the system, a least-squar-
es functional is regarded as the most "natural” objec-
tive functional.

Tow Nf

min Jis(@)= T 2 [uls. t; a)—uf ] @

Depending on the availability of valid statistical assump-
tions on observation errors or @ priori information on
the parameter, one may use a modified objective func-
tional [8].
2. Discretization Step

This step provides a computational framework for
minimization of the objective functional. Specificalty,
(2) is converted into an approximate finite dimensional
minimization problem on the basis of two kinds of
discretization: (i) finite difference or finite element
solution of the model equation (stale discretization) and

(ii) representation of the spatially varying parameter
as a linear combination of shape functions (parameter
discretization). For example, the parameter can be ap-
proximated using B-splines as follows [9].

N,
a(x):j‘é @ B &)

3. Optimization Step

In this step the discretized objective functional is
actually minimized with respect to the spline coeffi-
cients introduced in (3).

rr(xli]n Jislw), @ € R {4)

Typically the minimization is carried out using an iter-
ative scheme of the following form

(J){k = wlk) + Ylk) dU?," (5)

where d® denotes the descent direction at the k-th
major iteration, and v’ a step length along the descent
direction.

SENSITIVITY EVALUATION ALGORITHMS

Sensitivity is defined as the partial derivative of a
system output with respect to a model parameter. The
system output associated with the parameter estima-
tion problem stated in the previous section consists
of point values u(x, t; @), i=1,-+, n,, k=1, n, (ab-
breviated as ug). @ being a function of the spatial var-
iable x, each sensitivity gu./ga takes the form of a
functional gradient, whose meaning will be made clear
in the following.

In functional analysis, a gradient of a functional J{ot)
defined on a Hilbert space H is the unique element
o that satisfies

8]=(p, by for every da € H, 6)

where & denotes the variational operator, (-, -), the
inner product in the Hilbert space [10]. With the aid
of delta functions, the output u, can be represented
as a functional defined on L.(Q2).

Jo=ulx, t: o)

TJ :J LUkt @ Bx—x) 8(t—t) dx dt - (7)

Thus, the Eq.(6) with LA2) chosen for H implies
that when multiplied by a variation of parameter and
integrated over the domain, the sensitivity gradient
Ju./ga would give the consequent change in the mod-
el output us In other words, the profile of gu./da
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represents the influence of regional variation of the
parameter on the output.

The gradient gu./ga satisfying (6) was found using
an optimal control formulation for the objective func-
tional given in (7). Here the parameter o is regarded
as a control variable that minimizes the objective func-
tional J(a) under the constraint of the state Eq.(1).
First, an augmented objective functional is constructed
by introducing an adjoint variable A(x,t).

J(a):J': fﬂ [u(x,t; a) d(x—x) d(t—ty

+Ax, {%‘:— —V-[a ou)Vul— q}] dx dt (3)

The first variation of J(a) is expanded as

du
8= f j [5(){ x;) 8(t—ty) 6u+}\{ 3t
—V-[a o' (Wdu Vul—V-[a ¢(u) VBU]}
+A V-[8a ¢(u) Vu]}dx dt €)]

Next, applying the Green’s formula and the identity
equation

V-{a ¢'(W)du Vul+ v+ {a ¢(u) Véul
=v-La V{o(wsu}], (10)

(9) is arranged to give

=[] -5

&(t— tk)} Su dx dt+ J.n}\ Su]/‘_ I_dx

—o(w) V-(a VA)+8(x —x)

e
+J’“ LQG an o(wdu ds dt
,
+J j( f olu) VU‘V}\dt} da dx (11)
Q o

Finally, letting the terms on the right hand side vanish
except the last one, one can obtain

o -

o a”"f f o(u) Vu- VA dt (12)

where u satisfies the state Eq. (1), and A satisfies the
adjoint equation,

—O_i‘— = —o(u) V-{a(x) VA} +8(x —x;) 8(t--t,),
C

in Qx0T (13)
LC: Mx, =0 in Q

B.C.: s =0 on o1 x (0, T)
an

When a parameter to be estimated is discretized
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@ priort as in (3) it is sensitivity coefficients, e.g.,
oux/gw;, j=1,+-, N, that count in actual numerical im-
plementatlon. Once a sensitivity gradient is obtained,
each sensitivity coefficient can be calculated as follows.
OUu _ [ 0% B vy dx (14)
0  ga
However, it should be mentioned that the integral
operation of (14) implies the lumping of spatial details
of sensitivity behavior along the profile of the shape
function B,(x); this may result in ill-conditioning in
the optimization step unless the parameter is properly
discretized.

NUMERICAL EXPERIMENTS

1. Test Problem

A one-dimensional ideal gas reservoir {where ¢(u)
=u/u} was considered as a test problem to demon-
strate the algorithms described so far. For an easy
grasp of the relative magnitude of numerical values in-
volved, the governing equation was converted into a
dimensionless form by scaling each variable or param-
eter to the following reference values, respectively:
reservoir length L=10 Km, total time lapse T=2365
days, pressure u,=200 atm, total production rate q,=
0.219 atm/day, and transmissivity a,=6.58X10 7 m?

L { _6_}

ot K—— ox a(x)u ox +n Z Qo (X —X,),

in (0, 1) x (0, 1) (15)
IC. u(x, 0)=uyx) in (0, 1)

BC. 2% 0, 0= =0 in ©. 1)
X X

where k=a,Tu,/uL?=0.2365
n= qlTh»]l) =04

Similarly, the corresponding adjoint equation and sen-
sitivities were obtained in dimensionless forms.

ok Ku——{ 002 2 st xaie- )
ot
in 0, 1) x O, 1) 16)
LC. Ax, 1)=0 in (0 0
ax
BC. 2% (o, t)A (1 0=0 in (0, 1
‘l"":xlf'ui’iﬁ}idt an
oo o gX  gxX
O _ 1 QUi By gy (18)
do o pa
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2. Numerical Algorithms

Numerical solutions to the state Eq. (15) were obtain-
ed using a finite difference method (FDM). The spa-
tial domain (0, 1) was divided into 100 uniform inter-
vals. 101 point-centered grids were used to approxi-
mate the state variable, while 100 block-centered grids
for the parameter. The spatial derivative term in (15)
was converted first,

LR U (19)

ax 2 ox
and then was approximated using central difference
formula. The time derivative was approximated using
backward difference. The resulting system of nonlin-
ear equations were solved using Newton-Raphson iter-
ations.

Similarly, the adjoint Eq. (16) was solved using FDM
on the same mesh. The linearity of Eq.(16) in A ex-
empts one from Newton-Raphson iterations in solving
finite difference equations. The time steps march back-
ward from t=1 on. Due to the Neumann type bound-
ary condition, however, the initial relaxed state at t==1
persists until t,. So the computation time could be
reduced by starting from t,.

Once u and A were obtained, the value of sensitivity
gradient at the m-th parameter grid was evaluated
by approximating the derivatives by finite difference

;

(

. ga m -

OUn | K Yoy .

and then using the Simpson's rule. The sensitivity
coefficient with respect to the j-th spline coefficient
is also calculated as follows.

EUn g [ 9

ow, melpi L Jo Im

Bi(x,) Ax @n

where I,,={m: Bx.,)#0!

Estimation of a(x) proceeded in three steps as describ-
ed previously. First. a least squares objective function-
al was constructed as

Ton: n

minJis@= 2 {u(x, b @ —uwlt (22)

The observation data were simulated hy adding to the
calculated values of u random numbers having normal
distribution with mean zero and a standard deviation
of 0.01. Next, the parameter is discretized using B-
splines. Finally, the discretized objective functional was
minimized using the BFGS (Broyden-Fletcher-Gold-
farb-Shanno) quasi-Newton algorithm [11] and the
golden section method for line search.
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Fig. 1. u(x, t) vs. x for a(x)=1.0 with n,.=1 at x,=0.5.

RESULTS AND DISCUSSION

1. State Behavior

Fig. 1 shows typical pressure distributions in a reser-
voir which is assumed to have a uniform parameter
a(x)=1 and a single production well located in the
middle region. The initial uniform distribution can be
seen to move toward the excavated profiles as fluid
is withdrawn from the well. Indeed it is the data gath-
ered from this “excited” system that forms the ground
of parameter estimation. The assumed symmetry in
reservoir conditions is reflected in the symmetry of
the profiles.
2. Adjoint Behavior

Fig. 2 shows typical behavior of the dimensionless
adjoint variable obtained in the process of evaluating
a sensitivity gradient for the output u(0.5, 0.1) in the
same reservoir as in Fig. 1. In the adjoint Eq. (16), the
input stimulating the relaxed state takes a form of
a delta function at the observation site and time, ie.
S(x—x)8(t —t;). Accordingly, A(x,t) attains the maxi-
mum initially (t=0.1), then have gradually abated pro-
files as time passes backward.
3. Sensitivity Behavior

Fig. 3 shows three sensitivity gradient profiles for
three outputs u(0.2, 0.1), u(0.5. 0.1), u(0.8, 0.1) respec-
tively under the same reservoir conditions as in Fig. 1.
The profile corresponding to u(0.5, 0.1) forms a big
peak in the middle and decreases rapidly toward the
both ends. This implies that a small variation of the
parameter in the middle region where the production
well is located has a greater effect on the model output

Korean J. Ch. E.(Vol. 8, No. 4)
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Fig. 2. A(x. t) vs. x for gu(0.5, 0.1)/9a with a(x)=1.0,
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Fig. 3. gu/ga for a(x)=1.0 at t=0.1 with n,,=1 at x, =
0.5.

u(0.5, 0.1) than variations in the boundary regions
have. This can be ascribed to the sharp gradient in
the pressure distribution of Fig. 1 near the production
well, which will increase the integrand in (17). From
a physical view point, the transmissivity o represents
a measure of tendency for the system to dissipate
its pressure gradient. Thus, in the region where high-
er gradient builds up, the pressure output has larg-
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Fig. 4. gu/ga for a(x)= 1.0 at x=0.2 with n,, =1 at x,=
0.5.

er sensitivity to the transmissivity.

The major feature of the sensitivity profile for u(0.2,
0.1) is that it has negative values in the region he-
tween 0.2 and 0.5. This implies in general that a posi-
tive variation of the transmissivity in the region be-
tween a specific observation site and a nearby produc-
tion well will decrease the pressure output at the ob-
servation site, It is also observed that parameter var-
iation near the production well also has larger influ-
ence than elsewhere. The sensitivity profile for u(Q.8,
0.1) exhibits & symmetric profile to the profile for u(0.2,
0.1) which comes from the symmetry of observation
sites and reservoir conditions.

A sensitivity profile for a given observation point
gets intensified as time passes by. This temporal be-
havior is well illustrated in Fig. 4 which shows three
profiles for the outputs u(0.2, 0.1). u(0.2, 0.5) and u(0.2,
1.0).

Fig. 5 shows sensitivity hehavior observed in a re-
servoir with two production wells located at x=0.3
and 0.7. As in Fig 3, each profile has peaks around
the production wells and negative values between its
observation site and production wells. Besides, every
profile has zero value at x=0.5, which means that
parameter change in the middle of two preduction
wells where the pressure gradient vanishes will have
no effect on the output at any point.

Fig.6 shows sensitivity behavior in a reservoir
which has a spatially varying a(x)= 1~ 0.5 sin 2nx and
a single production well in the middle. Behavior simi-
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Fig. 5. gu/ga for a(x)=1.0 at t=0.1 with n,, =2 at x,,=
0.3, 0.7.

lar to Fig. 6 is observed on the whole, but symmetry
is lacked due to the unsymmetrical shape of a. Varia-
tion of parameter around x =0.75 where the parame-
ter has the minimum value can be seen to have larger
sensitivity than around the maximum point x=0.25.

The features of sensitivity gradient behavior discus-
sed so far can be summarized as follows.

(1) The pressure output has larger sensitivity to
a variation of parameter (a) near a production well,
while it has very small one to da in the boundary
region.

2) da between an observation well and a nearby
production well has a negative effect on the output
at the observation well.

(3) 8a in the middle of two production wells has

Table 1. Comparison between uniform mesh and nonuniform mesh schemes
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Fig. 6. gu/ga for a(x)=14+0.5 sin 2nx at t=0.1 with
n,=1 at x,=0.5,

no influence over any ug.

(4) da in a region where a has larger values has
a smaller effect in magnitude, but a more far-reaching
range of influence.

(5) As time passes by, the sensitivity gradient has
more intense and far-reaching profiles.
3. Application to Parameter Estimation

The sensitivity behavior discussed above explains
typical error behavior encountered in parameter esti-
mation. For example, large errors of estimates in the
boundary region comes from the feature (1) above.
This in turn implies that, when judiciously utilized,
the sensitivity gradient behavior may provide clues
to devising improved estimation algorithms. An illus-
trative scheme presented below makes use of the fea-

7 o.smizan

[tems Uniform mesh ! Nonuniform mesh )
873 0.0064 0.0643  0.0229 00030 0.0037 —0.0041 00271
00643 06950  0.1600 0.0229 —0.0041 0.8380 0.1520 00271
00229 01600  0.6950 0.0643 0.0271 0.1520 0.8380  —0.0041
00030 00229 0.0643 0.0064 0.0019 00271  —0.0041 0.0037
det(S'S) ? 5647X10 * 1.150% 10 *
Eigenvalues : 2234 X106 ¢ 1.115X 10!
of 8IS 5432%10 * 1.959% 10 2
5387X10 ! 3125%10 !
8637X10 ! 5191%10 !
It , 1.585% 10 ? 1609% 10 2
Iterations \ 12 6
la—aril. | 6.236X 10 ! 3.005x 10 *?
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Fig. 7. Least-squares estimates of ar{x)=1.0; effect of
mesh scheme.

ture (2) to devise a parameter discretization pattern
considering the layout of observation and production
wells in the domain.

A simple estimation problem was considered where
the reservoir has a uniform true parameter a(x)=1.0
and a single production well in the middle. The obser-
vation data consist of simulated pressure measure-
ments obtained 50 times successively with an interval
of t:=0.02 at each observation well located at x=0.2,
0.5 and 0.8, respectively. The unknown parameter is
represented by four B-splines of order 1, which corre-
sponds to a zonation method widely used in reservoir
history matching.

When a uniform mesh is applied for B-spline repre-
sentation on the domain (0, 1) with a breakpoint se-
quence (0., 0.25, 0.5, 0.75, 1.0), the sensitivity coeffi-
cients calculated by (21) will undergo a significant re-
duction because of the changing sign of sensitivity
gradient values around the observation point x=0.2
or 0.8 as shown in Fig. 3. This reduction can be preven-
ted by adopting a nonuniform mesh where the break-
point sequence (0., 0.2, 0.5, 0.8, 1.0) is aligned with
the layout of wells.

Table 1 compares the analysis results for two sensi-
tivity coefficient matrices obtained using each mesh
scheme. The results of estimation which were started
from a rather close initial guess "' =1.1 are also in-
cluded in the table. It is clear that the nonuniform mesh
yielded the better-conditioned sensitivity coefficient
matrix, and hence the more accurate estimate than
the uniform mesh. The difference between the two
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cases is more clearly illustrated in Fig. 7 showing the
profiles of estimates. The uniform mesh scheme yield-
ed an estimate with large errors in the boundary
region, while the nonuniform mesh scheme led to an
estimate with relatively small error over the whole
domain.
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NOMENCLATURE
B, . j-th B-spline function
d . descent direction vector
H . Hilbert space
] . objective function or functional
L :length of 1-dimensional reservoir [m]
L.(€Y) : space of square integrable functions over Q
N, - number of spline coefficients
n . unit outward normal vector to g2
N . number of observation wells
Npye . number of production wells
n, . number of measurements at each observation
well

q(x, t) . source term representing withdrawal or injec-
tion of fluid [Pa/sec

S . sensitivity coefficient matrix with respect to
spline coefficient

T . total time lapse [sec]

t : time variable [sec]

u . pressure [Pa]

u * initial pressure profile [Pa]

X . spatial variable [m]

X : spatial variable vector [m]

Greek Letters

a . transmissivity of porous medium = permeabil-
ity/porosity [m*]

¥ . step size along descent direction

At . finite difference step size for t

Ax . finite difference step size for x

5 > variation of a function or a functional

n . dimensionless factor for source term =g, T/u,

K . dimensionless factor for trtansmissivity = a, Tu,
/L?

A . adjoint variable

u > viscosity [Pa-sec]

®  fluid property term = compressibility/viscos-

ity ="sec ']
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. functional gradient in a Hilbert space

(KD) ! spatial domain of reservoir
o . boundary of spatial domain of reservoir
® . vector of B-spline coefficients
\Y . gradient
Superscripts
(k) > iteration counter in numerical minimization
(0) *initial guess in numerical minimization
obs ! observed value
. estimate
Subscripts
H . Hilbert space
i . point-centered state grid index
m : block-centered parameter grid index
j . B-spline index
k . grid point index for time variable
LS . least-squares
0 . reference value for de-dimensionalization of
transmissivity and pressure
ow . observation well
pw . production well
T . true
t . time
t . total

10.

11.

. Peaceman, D.W.:

. production well
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